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ABSTRACT
Receptor models are used to identify and quantify source
contributions to particulate matter and volatile organic
compounds based on measurements of many chemical
components at receptor sites. These components are se-
lected based on their consistent appearance in some
source types and their absence in others. UNMIX, positive
matrix factorization (PMF), and effective variance are dif-
ferent solutions to the chemical mass balance (CMB) re-
ceptor model equations and are implemented on avail-
able software. In their more general form, the CMB
equations allow spatial, temporal, transport, and particle
size profiles to be combined with chemical source profiles
for improved source resolution. Although UNMIX and
PMF do not use source profiles explicitly as input data,
they still require measured profiles to justify their derived
source factors. The U.S. Supersites Program provided ad-
vanced datasets to apply these CMB solutions in different
urban areas. Still lacking are better characterization of source
emissions, new methods to estimate profile changes be-
tween source and receptor, and systematic sensitivity tests
of deviations from receptor model assumptions.

INTRODUCTION
Receptor-oriented source apportionment models infer
source contributions and atmospheric processes from air
quality measurements. Receptor models complement,
rather than replace, source-oriented dispersion and chem-
ical transformation models that begin with source emis-
sion rates to estimate ambient concentrations.1,2 Source
and receptor models are mathematical representations of
reality, requiring simplifying assumptions that create un-
certainty. Applying both types of models to the same
situation allows them to be improved when their results
diverge and lends confidence to their results when they
agree.3

Receptor models have been used to develop emission
reduction strategies for attaining total suspended partic-
ulates, PM10, PM2.5 (particulate matter with aerodynamic
diameters less than 10 and 2.5 �g, respectively), and
ozone (O3) standards, decreasing human exposures to
toxic substances, and improving visibility.4–8 As part of
these reductions many of the chemical markers for major
sources, such as lead in gasoline engine exhaust and trace
elements in primary industrial emissions, have been re-
duced or eliminated. After emissions from on-road engine
exhaust and residential wood combustion (RWC) were
quantified and controls introduced, separating these con-
tributions from high emitters, cold starts, non-road en-
gines, and wildfires became more important. Determining
sources of particulate matter (PM)-forming gaseous pre-
cursors of secondary sulfates, nitrates, and secondary or-
ganic aerosol (SOA) is also important. Addressing these
issues with receptor models requires new and more spe-
cific measurement techniques and better ways to handle
the data.

Since 1999, the U.S. Supersites Program9–18 has devel-
oped and tested new methods for monitoring particles
and their aerosol precursors. During the same period, the
Speciation Trends Network (STN)19 was deployed in urban
areas to complement the PM2.5 mass, elements, ions, and
carbon measurements from the non-urban Interagency
Monitoring of PROtected Visual Environments (IMPROVE)
network.20 The Southeastern Aerosol Research and Char-
acterization (SEARCH)21 experiment was also initiated.
Methods to obtain samples of source emissions relevant
to ambient particle and gas characteristics were combined
with new laboratory methods to identify markers and
with aerosol evolution models to determine how these
characteristics change soon after emission. These have
advanced the ability of receptor models to better estimate
source contributions to ambient concentrations.

More than 1500 articles and reports have been iden-
tified since mathematical receptor models were first ap-
plied to air quality measurements,22 and several reviews
and evaluations have been published.23–40 This paper in-
tends to address the following question: “How well can
we identify and quantify source contributions using re-
ceptor models?” Except for historical and exemplary pur-
poses, this paper limits its investigation to work published
since 2000, with a focus on PM source apportionment in
the vicinity of the Supersite cities of Atlanta, GA; Balti-
more, MD; Fresno, CA; Houston, TX; Los Angeles, CA;
New York, NY; Pittsburgh, PA; and St. Louis, MO.

IMPLICATIONS
Receptor modeling is useful for the identification and quan-
tification of source contributions for emission reduction
strategies. Additional chemical measurements that mark
specific sources are needed to improve the utility of exist-
ing samples. Continuous monitoring systems allow the
transport direction of sources to be better specified. As
with all models, receptor model assumptions must be chal-
lenged and source apportionment uncertainties assessed.
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RECEPTOR MODEL FORMULATION
Most receptor models present solutions to the following
equations:

Ciklmn � �
j�1

J

FijmTijklmnSjklmn for i � 1 to I (1)

The indices are defined as:
• i represents a quantifiable chemical element,

compound, or physical property that is expected
to have markedly different proportions to other
characteristics in different sources.

• j represents a group of emitters with similar emis-
sion compositions that differ from the composi-
tions of other source types.

• k represents the sampling period, a part of the
day, day of the week, season, period before or
after a control measure has been implemented, or
including a special event such as a fire or dust
storm.

• l represents the receptor location. Monitoring
sites are usually selected to determine human
exposure, but they are most useful for receptor
models when they also include sites that repre-
sent different spatial scales,41 including those
near suspected pollution sources such as road-
ways and industries, as well as regional back-
ground sites representing mixtures from many
emitters.

• m represents particle size fraction, the most useful
being the ultrafine (�0.1 �m), fine (PM2.5), and
coarse (2.5–10 �m, PM10–2.5) fractions.

• n represents transport direction, which can be a
simple wind direction for local sources, or a more
complex set of curvilinear trajectories for long-
range transport.

Using these indices, the variables in eq 1 are:
• Ciklmn is the concentration (unit of �g/m3, ng/

m3, ppm, or ppb) of pollutant i for time period k
at location l corresponding to particle size range
m and transport direction n. This is the measured
receptor concentration.

• Fijm is the fractional quantity of pollutant i in
source type j for size range m (unitless). For PM
measurements, profile abundances are often nor-
malized to mass emissions from a source in the
desired size range and averaged over several
source tests.

• Tijklmn are the changes in Fijm during transport
from the source to the receptor.

• Sjklmn is the contribution from source type j in
size range m from wind sector n for time period k
at location l (�g/m3, ng/m3, ppm, or ppb). Source
contributions are calculated by the receptor
model.

In its most common use, eq 1 is solved for Sjklmn using Fijm

and Ciklmn as input data. Uncertainties of the input data
are designated as �Ciklmn (usually determined by replicate
analysis and propagation of analytical and flow rate un-
certainties) and �Fijm (usually estimated as the standard

deviation of the average from several source tests). Uncer-
tainties of the source contribution estimates (SCEs) are
designated as �Sjklmn and are estimated by error propaga-
tion or by Monte Carlo simulation.33

Equation 1 reduces to the Chemical Element Balance
of Hidy and Friedlander42 for single samples taken at a
single location and time period such that:

Cit � �
j

Fij Sjt � Eit (2)

Cit is the concentration of the ith chemical species mea-
sured at time or location t. Fij is the fractional abundance
of the ith species in the jth source type, Sjt is the normal-
ized contribution of the jth source at time and/or location
t, and Eit represents the error between the measured and
calculated ambient concentrations. They assumed that
Tijklmn was equal to one, meaning that the proportions of
the different elements they used as source markers for
southern California did not change between source and
receptor. In their example, Hidy and Friedlander42 used
individual elements as sole markers for selected source types.
Friedlander43 recognized the limitations of available mea-
surements, and conceptualized the requirements of mea-
surement devices that would provide information detailed
enough to bring the full potential of eq 1 into reality. Taking
advantage of advanced measurement techniques that were
only available recently, the Supersites Program demon-
strated the potential of these concepts to attain reality.

Although Fijm most commonly represents chemical
source profiles, they may also represent other properties
such as size or temporal variability. The fine and coarse
modes of the aerosol size distributions provide a good first
cut at source apportionment, with most of the coarse
material being composed of suspended dust, sea salt, and
pollen, whereas most of the fine material contains carbon
from combustion products and secondary species includ-
ing sulfates, nitrates, and organics. When Fijm represents
diurnal distributions, it shows traffic peaks near morning
and evening rush hours, increasing concentrations at
night during winter heating seasons and sharp spikes (�5
min) from nearby sources. Many Supersite studies ex-
plored the use of spatial and temporal variations to infer
and/or confirm contributing sources.

SOLUTIONS TO THE RECEPTOR MODEL
EQUATIONS
Most of the receptor models used before and during the
Supersites Program are solutions to eq 1, which can be
derived from physical principles with simplifying as-
sumptions.35 Receptor models are sometimes incorrectly
called “statistical” methods. The statistical distributions,
often-missing data, and uncertainties of the input mea-
surements do not conform to the rigorous assumptions
required for statistical tests. This misnomer arises because
the mathematical techniques used in receptor modeling
are also used to determine and test statistical associations
in other areas of science.

Table 1, a–d, summarizes several of the solutions that
have been applied to the receptor model equations. Ow-
ing to the availability of software provided by the U.S.
Environmental Protection Agency (EPA), the UNMIX,
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positive matrix factorization (PMF), and chemical mass
balance (CMB) are the models most widely used in the
Supersites Program. CMB solutions require measured
source profiles (Fijm) as input data. UNMIX and PMF do
not use source profiles as input data, but it is untrue that
source profiles are unnecessary for these models. UNMIX
and PMF derive source factors that must be associated
with measured source profiles to achieve meaningful
source apportionment. The degree of correspondence be-
tween factor and profile should guide the selection of
factors, weighting of variables, and weighting of receptor
concentrations for these solutions.44,45 Unfortunately,
comparisons of UNMIX and PMF factors with measured
source profiles are rarely done in publications, leading to
ambiguous results.

The PMF and the pseudodeterministic receptor model
(PDRM) can have an infinite number of solutions, even

with non-negativity constraints. PMF provides parame-
ters such as FPEAK and Fkey to adjust the solution on the
basis of the practitioner’s experience and knowledge
about the sources. PDRM confines the solution within
preset bounds determined from dispersion models, as de-
scribed in Table 1b. Zhou et al.46 and Ogulei et al.47 used
a multilinear engine (ME or ME2) to analyze PM2.5 spe-
ciation data combining measurements on different time
scales. This cannot be achieved by PMF without averaging
measurements to the same time scale. Other constraint
techniques such as partial least squares (PLS) are also used
in the Supersite studies. PLS seeks to resolve factors that
can explain two sets of related data simultaneously.

Certain compounds are used as markers for a source
type when negligible amounts are believed to come from
other sources. Examples include: elemental carbon (EC)
for primary combustion emissions,48 carbon (C) isotopes

Table 1a. Different receptor models used in the Supersite source apportionment studies: chemical mass balance (CMB).

Chemical Mass Balance

Receptor Model Description Strengths and Weaknesses

Effective Variance CMB 42,121

(Note that all models based on eq 1 or
2 are CMB equations. The term CMB
used here reflects the historical
solution in which source profiles are
explicitly used as model input and a
single sample effective variance
solution is reported.)

CMB software is currently distributed by
EPA. The most recent version is the
CMB 8.2, which is run in the
Microsoft Windows system.

Principle
Ambient chemical concentrations are expressed as the sum

of products of species abundances in source emissions
and source contributions (eq 1 or 2). These equations
are solved for the source contribution estimates when
ambient concentrations and source profiles are input.
The single-sample effective variance least squares122 is
the most commonly used solution method because it
incorporates uncertainties of ambient concentrations and
source profiles in the estimate of source contributions
and their uncertainties. This reduced to the tracer
solution when it is assumed that there is one unique
species for each source. Choices of source profiles
should avoid collinearity, which occurs when chemical
compositions of various source emissions are not
sufficiently different.121

Data Needs
CMB requires source profiles, which are the mass fractions

of particulate or gas species in source emissions. The
species and particle size fraction measured in source
emissions should match those in ambient samples to be
apportioned. Several sampling and analysis methods
provide time-integrated speciation of PM2.5 and volatile
organic compounds (VOCs) for CMB. Source profiles are
preferably obtained in the same geographical region as
the ambient samples, although using source profiles
from different regions is commonly practiced in the
literature. The practitioner needs to decide the source
profiles and species being included in the model, on the
basis of the conceptual model and model performance
measures.

Output
Effective variance CMB determines, if converged, source

contributions to each sample in terms of PM or VOC
mass. CMB also generates various model performance
measures, including correlation R2, deviation �2, residue/
uncertainty ratio, and MPIN matrix that are useful for
refining the model inputs to obtain the best and most
meaningful source apportionment resolution.

Strengths
● Software available providing a good user interface.
● Provides quantitative uncertainties on source

contribution estimates based on input
concentrations, measurement uncertainties, and
collinearity of source profiles.

● Quantifies contributions from source types with
single particle and organic compound
measurements.

Weaknesses
● Completely compatible source and receptor

measurements are not commonly available.
● Assumes all observed mass is due to the sources

selected in advance, which involves some
subjectivity.

● Chemically similar sources may result in
collinearity without more specific chemical
markers.

● Typically does not apportion secondary particle
constituents to sources. Must be combined with
profile aging model to estimate secondary PM.

Table 1, a– d, updated with permission from Watson and Chow.38 Copyright Air & Waste Management Association 2004.
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Table 1b. Different receptor models used in the Supersites source apportionment studies: factor analysis.

Factor Analysis

Receptor Model Description Strengths and Weaknesses

PMF123,124

PMFx (PMF2 and PMF3)
software is available from
Dr. Pentti Paatero at the
University of Helsinki,
Finland. This software is a
Microsoft DOS application.
EPA distributes EPA PMF76

version 1.1 as a Microsoft
Windows application with
better user interface.

Principle
PMFx contains PMF2 and PMF3. PMF2 solves the CMB equations (i.e., eqs 2 and

3) using an iterative minimization algorithm. Source profiles Fij and contribution
Sjt are solved simultaneously. The non-negativity constraint is implemented in
the algorithm to decrease the number of possible solutions (local minimums) in
the PMF analyses, because both source profile and contribution should not
contain negative values. There is rotational ambiguity in all two-way factor
analyses (i.e., Fij and Sjt matrices may be rotated and still fit the data). PMF2
allows using the FPEAK parameter to control the rotation. A positive FPEAK value
forces the program to search such solutions where there are many zeros and
large values but few intermediate values in the source matrix Fij. Fkey can
further bind individual elements in Fij to zero. On the basis of a similar
algorithm, PMF3 solves a three-way problem.

PMFx and UNMIX estimate Fij and Sjt by minimizing:

Q or �2��
i

�
t

[Eit��it]2��
i

�
t

[(Cit��
j

FijSjt)/�it]2 (3)

Where the weighing factor, �it, represents the magnitude of Eit, PMFx limits
solutions of eq 2 to non-negative Fij and Sjt.

Data Needs
A large number of ambient samples (usually much more than the number of

factors in the model) are required to produce a meaningful solution. Species
commonly used in PMF are also those in CMB. Weighting factors associated
with each measurement need to be assigned before analysis. The practitioner
also needs to decide the number of factors, FPEAK, and Fkey in the model.

Output
PMFx reports all the elements in Fij and Sjt matrices (PMF2). It also calculates

model performance measures such as deviation �2 and standard deviation of
each matrix element. The practitioner needs to interpret the results linking them
to source profiles and source contributions.

Strengths
● Software available.
● Can handle missing or below-detection-limit

data.
● Weights species concentrations by their

analytical precisions.
● Downweight outliers in the robust mode.
● Derives source profiles from ambient

measurements as they would appear at the
receptor (does not require source
measurements).

Weaknesses
● Requires large (�100) ambient datasets.
● Need to determine the number of retaining

factors.
● Requires knowledge of source profiles or

existing profiles to verify the representativeness
of calculated factor profiles and uncertainties of
factor contributions.

● Relies on many parameters/initial conditions
adjustable to model input; sensitive to the
preset parameters.

ME2125

ME2 code is available from
Dr. Pentti Paatero at the
University of Helsinki,
Finland as a Microsoft
DOS application.

Principle
The PMFx algorithm is derived from ME2. Unlike PMFx that is limited to

questions in the form of eq 1 or 2, ME2 solves all models in which the data
values are fitted by sums of products of unknown (and known) factor
elements. The first part of the algorithm interprets instructions from the user
and generates a table that specifies the model. The second part solves the
model using an iterative minimization approach. Additional constraints could
be programmed into the model to reduce the ambiguity in source
apportionment. These constraints may include known source profiles and/or
contributions (e.g., contributions are known to be zero in some cases).

Data Needs
Data needs are similar to those of PMFx but are more flexible. In theory, any

measured or unknown variables may be included in the model as long as
they satisfy linear relationships. The users need to specify the model
structure, the input, and the output.

Output
ME2 calculates and reports all unknown variables in the model.

Strengths
● Software available.
● Can handle user-specified models.
● Possibility to include all measured variables into

the model, such as speciated concentration
over different time scales, size distributions,
meteorological variables, and noise parameters.

Weaknesses
● Require substantial training to access the full

feature of the software and develop a model.
● Generally requires large ambient datasets.
● Need to assume linear relationships between all

variables.
● Relies on many parameters/initial conditions

adjustable to model input; sensitive to the
preset parameters.
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Table 1b. (cont.)

Factor Analysis

Receptor Model Description Strengths and Weaknesses

UNMIX29,44,126

UNMIX code is available from
Dr. Ron Henry at the
University of Southern
California as an MatLab
application. A stand-alone
version (UNMIX version 6)
is also available from EPA.

Principle
UNMIX views each sample as a data point in a multidimensional space with

each dimension representing a measured species. UNMIX solves eqs 2 and
3 by using a principle component analysis (PCA) approach to reduce the
number of dimensions in the space to the number of factors that produce
the data, followed by an unique “edge detection” technique to identify
“edges” defined by the data points in the space of reduced dimension (e.g.,
Figures 1 and 3). The number of factors is estimated by the NUMFACT
algorithm in advance127, which reports the R2 and signal-to-noise (S/N) ratio
associated with the first N principle components (PCs) in the data matrix.
The number of factors should coincide with the number of PCs with S/N
ratio � 2. Once the data are plotted on the reduced space, an edge is
actually a hyperplan that signifies missing or small contribution from one or
more factors. Therefore, UNMIX searches all the edges and uses them to
calculate the vertices of the simplex, which are then converted back to
source composition and contributions. Geometrical concepts of self-modeling
curve resolution are used to ensure that the results obey (to within error)
non-negativity constraints on source compositions and contributions.

Strengths
● Software available with graphical user interface.
● Does not require source measurements.
● Provide graphical problem diagnostic tools (e.g.,

species scatter plot).
● Provide evaluation tools (e.g., R2, S/N ratio).
Weaknesses
● Requires large (�100) ambient datasets.
● Need to assume or predetermine number of

retained factors.
● Does not make explicit use of errors or

uncertainties in ambient measurements.
● Cannot use samples containing missing data in

any species.
● Limited to a maximum of 7 or 14 (UNMIX

version 6) factors.
● Can report multiple or no solutions.
● Requires knowledge of existing source profiles

to evaluate the solutions.
Data Needs
A large number of ambient samples (usually much more than the number of

factors in the model) are required to achieve a meaningful solution. Species
commonly used in UNMIX are also those in CMB. The measurement
precision is not required. The practitioner needs to specify the number of
factors on the basis of the NUMFACT results.

Output
UNMIX determines all the elements in the factor (Fij) and contribution (Sjt)

matrices. It also calculates the uncertainty associated with the factor
elements and model performance measures including: (1) R2, (2) S/N ratio,
and (3) strength.

PDRM97

PDRM was developed under
the Supersites Program
and requires MatLab or
equivalent software to
perform the calculation.

Principle
PDRM estimates contributions from selected stationary sources for a receptor

site using high time-resolution measurements and meteorological data. In
PDRM, eq 2 is modified to

Cit � �
j

ERi,j��

Q�
j,t

� Eit (4)

where ERi,j is interpreted as the emission rate of species i from stationary
source j and (�/Q)j,t is the meteorological dispersion factor averaged over
the time interval t. Equation 4 is solved for ERi,j and (�/Q)j,t simultaneously
by a nonlinear fit minimizing the objective function, FUN:

FUN � �
i�1

l �
t�1

m �
j�1

n �ERi,j��

Q�
j,t

PDRM

� Cit�2

(5)

Because the number of solutions for a product of unknowns is infinite,
additional constraints are set up for (�/Q)j,t on the basis of the Gaussian
plume model, thus:

LB��

Q�
j,t

Met

� ��

Q�
j,t

PDRM

� UB��

Q�
j,t

Met

(6)

��

Q�
j,t

Met

�
1

2	�y�zu
exp��

1
2

y2

�y
2��exp��

1
2 �z � h

�z
�2�

� exp��
1
2 �z � h

�z
�2�� (7)

Strengths
● Explicitly include meteorological information and

stack configuration of stationary sources into
the model.

● Do not require source measurements.
● Do not need to interpret the relations between

factors and sources.
● Commercial software (e.g., MatLab) available

for performing nonlinear fit.
● Suitable for high time-resolution measurement.
Weaknesses
● Can only handle stationary sources but not area

or mobile sources.
● Need to assume that only stationary sources

are considered in the model contribute
significantly for a measurement at the receptor
site.

● Do not account for uncertainty in the
measurement.

● Meteorological data may not be always
available or accurate.

● Gaussian plume model may not be
representative of the actual atmospheric
dispersion.

● Sensitive to the imposed constraints (UB and LB).

Watson, Chen, Chow, Doraiswamy, and Lowenthal

Volume 58 February 2008 Journal of the Air & Waste Management Association 269



Table 1b. (cont.)

Factor Analysis

Receptor Model Description Strengths and Weaknesses

Equations 6 and 7 limit the solution of eq 5 within the lower (LB) and upper
(UB) bound of those predicted by the Gaussian plume model using different
parameterizations.

Data Needs
PDRM requires speciated measurements at a higher time-resolution than

typical CMB or PMF applications because of the fast-changing
meteorological parameters. PDRM also requires data for eq 7: transport
speed (u), lateral and vertical dispersion parameters (�y and �z), and stack
height (h).

Output
PDRM determines emission rates and contributions from each point source

considered in the model at the same time resolution as the measurement.

PLS128 Principle
PLS examines the relationships between a set of predictor (independent) and

response (dependent) variables. It assumes that the predictor and response
variables are controlled by independent “latent variables” less in number
than either the predictor or the response variables. In recent applications,96

PM chemical composition and size distribution are used as predictor (X ) and
response (Y ) variables, respectively. Equation 2 is modified to:

Xit � �
j

TijPjt � Eit (8)

Yit � �
j

UijCjt � Dit (9)

where T and U are matrices of so-called “latent variables,” and P and C are
loading matrices. If X and Y are correlated to some degree, T and U would
show some similarity. Equations 8 and 9 are solved by an iterative algorithm
“NIPALS,” which attempts to minimize E,D, and the difference between T
and U simultaneously. If T and U end up being close enough, the X and Y
variables can be explained by the same latent variables. These latent
variables may then be interpreted as source or source categories.

Data Needs
Typical applications of PLS require both chemical speciated and size-

segregated measurements. The practitioner needs to decide the number of
latent variables on the basis of the correlation of resulting T and U matrices.

Output
PLS calculates latent variables, which are common factors best explaining the

predictor and response variables, and the residues from fitting. Rx and Ry,

Rx � 1 � var
E�/var
X� (10)

Ry � 1 � var
D�/var
Y� (11)

indicate the degree to which variables X and Y are explained by the latent
variables.

Strengths
● Fit two types of measurements (e.g., chemistry

and size) with common factors. Provide more
information to identify sources.

● Analyze strongly collinear and noisy dataset.
● Do not require source measurements.

Weaknesses
● Requires large (�100) ambient datasets.
● Difficult to relate latent variables to any physical

quantities.
● Do not provide quantitative source contribution

estimates.
● Need to decide the number of latent variables.
● Do not explicitly make use of measurement

uncertainties.
● Can result in no solution.
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Table 1c. Different receptor models used in the Supersites source apportionment studies: tracer-based method.

Tracer-Based Method

Receptor Model Description Strengths and Weaknesses

EF129,130

The EF method may use a MLR
algorithm, which is available
in most statistical and
spreadsheet software

Principle
A tracer (or marker) for a particular source or source category is a species

enriched heavily in the source emission against other species and other
sources. Using EFs, concentration of the i th pollutant at a receptor site at
time t (i.e., Ci,t) can be expressed as:

Ci,t � �
j

1
EFi,pj

Cpj,t � Zi,t � �
j

�Fij

Fpj
�Cpj,t � Zi,t (12)

where the enrichment factor EFi,pj is the ratio of emission rate of the
pollutant of interest (Fij) and tracer species (Fpj) from source j. Cpj,t is the
concentration of tracer species for source j at time t, and Zi,t represents
contributions from all other sources (including the background level). The
solution for eq 12 is situation-dependent. EFi,pj is usually unknown but
may be estimated from source profiles, edges of a two-way scatter plot
(e.g., Figures 1 and 3), or the ratio of Ci,t to Cpj,t for a particular period
when it is believed that a single source is dominant. In cases where Zi,t is
a constant, EFi,pj may be derived from MLR.

Data Needs
The minimum data needs include concentrations of all primary tracers at the

receptor site. Known EFs or background levels are helpful.
Output
The EF method determines contributions to species i from each source

considered in the model.

Strengths
● No special software needed.
● Indicate presence or absence of particular

emitters.
● Provides evidence of secondary PM

formation and changes in source impacts
by changes in ambient composition.

● Could use a large (�100) dataset or a
small (e.g., �10) dataset.

Weaknesses
● Semiquantitative method, not specific

especially when the EFs are unknown in
advance.

● Limited to sources with unique markers.
● Tracer species must be exclusively from

the sources or source categories
examined.

● Provide very limited error estimates.
● More useful for source/process

identification than for quantification.

NNLS131,132

The MatLab Optimization
Toolbox provides a function
“lsqnonneg” for performing
the NNLS calculation.

Principle
NNLS also solves the EF equation (eq 12 or equivalent) with known target

species and tracer concentrations. Conventional MLR solutions to eq 12
may lead to negative EFs due to the uncertainty in measurements or
colinearity in source contributions. This is avoided in the NNLS approach
since additional non-negative constraints are built into the algorithm, i.e.:

EFi,pj � 0 (13)

Utilizing orthogonal decomposition, a NNLS problem can be reduced to the
more familiar least-distance programming and solved by a set of iterative
subroutines developed and tested by Lawson and Hanson.131 In a more
general sense, NNLS linearly relates a response variable to a set of
independent variables with only non-negative coefficients.

Data Needs
When applied to EF or MLR problems, NNLS requires the concentration of

target (response) and tracer (independent) species.
Output
NNLS generates non-negative regression coefficients for an EF/MLR problem

and these coefficients can be related to the source contributions.

Strengths
● Implemented by many statistical software

packages.
● Generate only non-negative EFs or

regression coefficients.
● Do not require source measurements.
● Possible to include meteorological or

other (besides chemistry) data into the
model.

Weaknesses
● Require a large (�100) set of ambient

measurements.
● Semiquantitative method, not specific.
● Do not explicitly consider measurement

uncertainties.
● Tracer species must be exclusively from

the sources or source categories
examined.

● Non-negative constraints may not be
appropriate in some cases.

FAC111 Principle
FAC provides a simple mean of estimating the SOA production rate using the

emission inventories of primary precursor VOCs. FAC is actually a source-
oriented modeling technique but it does not take into account all the
atmospheric processes. FAC is defined as the fraction of SOA that would
result from the reactions of a particular VOC:

�SOA
 � �
i

FAC i � 
�VOCi
0 � Fraction of VOC i reacted� (14)

where �VOCi
0 is the emission rate of VOCi and �SOA
 is the formation rate
of SOA. Equation 14 can be viewed as an extension of eq 12 but
concentrations are replaced with emission rates and EFs are replaced
with FACs. FAC and the fraction of VOC reacted under typical ambient
conditions have been developed for a large number of hydrocarbons
�C6.111 The most significant SOA precursors are aromatic compounds
(especially toluene, xylene, and trimethylbenzenes) and terpenes. In most
applications, these FACs are used directly to estimate SOA.

Data Needs
FAC requires the VOC emission inventory in the region of interest. The

knowledge of O3 and radiation intensity is also helpful for slight
modifications of the FACs.

Output
FAC method estimates the total production rate of SOA.

Strengths
● Link SOA to primary VOC emissions so

that SOA can also be treated as primary
particles in the PM modeling.

● Simple and inexpensive.
Weaknesses
● Ignore the influence of aerosol

concentration and temperature-dependent
gas-particle partitioning on SOA yield.

● Limited by the accuracy of VOC emission
inventory.

● Do not directly infer the contribution of
each source to ambient SOA
concentration.

● Difficult to verify.
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Table 1d. Different receptor models used in the Supersites source apportionment studies: meteorology-based method.

Meteorology-Based Method

Receptor Model Description Strengths and Weaknesses

CPF134,135 Principle
CPF estimates the probability that a given source contribution from a given

wind direction will exceed a predetermined threshold criterion (e.g., upper
25th percentile of the fractional contribution from the source of interest).
The calculation of CPF uses source contributions (i.e., Sjt in eq 2)
determined for the receptor site and local wind direction data matching
each of the source contributions in time. These data are then segregated
to several sectors according to wind direction and the desired resolution
(usually 36 sectors at a 10° resolution). Data with very low wind speed
(e.g., � 0.1 m/sec) are usually excluded from analysis because of the
uncertain wind direction. CPF is then determined by:

CPF
�� �
m��

n��
(15)

where m�� is the number of occurrences in the direction sector � 3 � �
�� that exceeds the specified threshold, and n�� is the total number of
wind occurrences in that sector. Because wind direction is changing
rapidly, high-time resolution measurements (e.g., minutes to hours) are
preferred for a CPF analysis. If the calculated source contributions
represent long-term averages, wind direction needs to be averaged over
the same duration. In addition to source contribution, CPF can be applied
directly to pollutant concentration measurements at a receptor site.

Data Needs
CPF requires the time series of source contributions at a receptor site, which

is usually determined by CMB or factor analysis methods using speciated
measurements at the site. CPF also requires wind direction and wind
speed data averaged over the same time resolution as the sampling
duration.

Output
CPF reports the probability of “high” contribution from a particular source or

factor occurring within each wind direction sector. The results are often
presented in a wind rose plot (e.g., Figure 4a).

Strengths
● Infer the direction of sources or factors relative

to the receptor site.
● Provide verification for the source identification

made by factor analysis method.
● Easy to implement.
Weaknesses
● Criterion for the threshold is subjective.
● Absolute source contribution (or fractional

contribution) may be influenced by other
factors besides wind direction (e.g., wind
speed, mixing height).

● Local and near-surface wind direction only has
a limited implication for long-range transport.

● Easy to be biased by a small number of wind
occurrences in a particular sector.

● Work better for stationary sources than area or
mobile sources.

NPR136,137 Principle
NPR calculates the expected (averaged) source contribution as a function of

wind direction following:

S
�� �

�
i

K�� � Wi

�� �� Si

�
i

K�� � Wi

�� � (16)

where Wi is the wind direction for the i th sample and Si is the contribution
from a specific source to that sample, determined from measurements at
the receptor site. K is a weighting function called the kernel estimator.
There are many possible choices for K. Henry et al.136 recommend either
Gaussian or Epanechnikov functions. The most important decision in NPR
is the choice of the smoothing parameter ��. If �� is too large, S(�) will
be too smooth and meaningful peaks could be lost. If it is too small, S(�)
will have too many small, meaningless peaks. �� needs to be chosen
according to the project-specific spatial distribution of sources. NPR also
estimates the confidence intervals of S(�) based on the asymptotic normal
distribution of the kernel estimates, thus:

�S
�� �

�
i

K�� � Wi

�� �� 
Si � S
���2

��
i

K���Wi

�� ��2 (17)

Strengths
● Infer the direction of sources or factors relative

to the receptor site.
● Provide verification for the source identification

made by factor analysis method.
● Require no assumption about the function form

of the relationship between wind direction and
source contribution.

● Provide uncertainty estimates.
● Easy to implement.
Weaknesses
● Choices for the kernel estimator and

smoothing factor are subjective.
● Absolute source contribution (or fractional

contribution) may be influenced by other
factors besides wind direction (e.g., wind
speed, mixing height).

● Local and near-surface wind direction only has
a limited implication for long-range transport.

● Easy to be biased by a small number of wind
occurrences in a particular sector.

● Work better for stationary sources than area or
mobile sources.
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Table 1d. (cont.)

Meteorology-Based Method

Receptor Model Description Strengths and Weaknesses

Data Needs
NPR requires the same data as the CPF method, including the time series of

source/factor contributions (or fractional contributions) at the receptor site
and local wind direction data matching the sampling duration in time.

Output
NPR reports the distribution of source contribution as a function of wind

direction and the confidence level associated with it.

TSA138

TSA requires the calculation of
air parcel back trajectory,
which is often accomplished
using the HY-SPLIT
model.115,139 HY-SPLIT
version 4.5 is available at
http://www.arl.noaa.gov/re
ady/hysplit4.html.

Principle
Similar to CPF, TSA clusters the measured pollutant concentration or

calculated source contribution according to the wind pattern. However, air
parcel back trajectory, rather than local wind direction, is used. A back
trajectory traces the air parcel backward in time from a receptor. The
initial height is often between 200 and 1000 m above ground level where
the wind direction could differ from the surface wind direction
substantively. For each sample i, TSA obtains one or more trajectories and
calculates their total residence time in the j th directional sector (�i,j, i.e.,
the total number of 1-hr trajectory end points that fall into the sector). The
pollutant concentration or source contribution in the sample, Si, is then
linearly apportioned into each directional sector according to �i,j and
averaged over all samples to produce the directional dependent pollutant
concentration/source contribution for the period of interest:

Sj � �
i

Si�
�i,j�

j

�i,j	/N (18)

where N is the number of samples. Compared with CPF and NPR, TSA
considers the entire air mass history rather than just the wind direction at
the receptor.

Data Needs
TSA requires the time series of pollutant concentration or source contribution

at the receptor site, and back trajectories initiated over the site during the
sampling duration. Trajectory is usually calculated once every hour so TSA
is more suitable for analyzing measurements of � 1-hr resolution.

Strengths
● Infer the direction of sources or factors relative

to the sampling site.
● Provide verification for the source identification

made by factor analysis method.
● Account for air mass transport over hundreds

to thousands of kilometers and on the order of
several days.

● Can represent plume spread from vertical wind
shear at different hours of day by adjusting
the initial height of back trajectories.

Weaknesses
● Need to generate and analyze the back

trajectory data.
● Uncertainty in back trajectory calculation

increases with its length in time.
● Source contribution depends on not only

trajectory residence time but also entrainment
efficiency, dispersion, and deposition.

● Difficult to resolve the direction of more
localized sources.

Output
TSA reports the average pollutant concentration or source contribution as a

function of wind direction based on back trajectory calculations.

PSCF140

PSCF requires the calculation
of air parcel back trajectory,
which is often accomplished
using the HY-SPLIT
model.115,139 HY-SPLIT
version 4.5 is available at
http://www.arl.noaa.gov/re
ady/hysplit4.html.

Principle
Ensemble air parcel trajectory analysis refers to the statistical analysis on a

group of trajectories to retrieve useful patterns regarding the spatial
distribution of sources. Uncertainties associated with individual trajectory
calculations largely cancel out for a sufficient number of trajectories or
trajectory segments. As a popular ensemble back trajectory analysis, PSCF
estimates the probability that an upwind area contributes to high pollutant
concentration or source contribution. Back trajectories are first calculated
for each sample at the receptor site. To determine the PSCF, a study
domain containing the receptor site is divided into an array of grid cells.
Trajectory residence time (the time it spends) in each grid cell is calculated
for all back trajectories and for a subset of trajectories corresponding to
“high” pollutant concentration or source contribution at the site. PSCF in
cell (i,j ) is then defined as:

PSCFi,j �
Sum of “high” residence time in cell 
i, j�

Sum of all residence time in cell 
i, j�
(19)

The criterion for high pollutant concentration or source contribution is critical
for the PSCF calculation. The 75th or 90th percentile of the concentration
or factor is often used.113,141,142 Residence time can be represented by the
number of trajectory end points in a cell.

Data Needs
Similar to TSA, PSCF calculation requires the time series of pollutant

concentration or source contribution at the receptor site, and back
trajectories initiated over the site during the sampling period. Trajectories
should be calculated with 1- to 3-h segment to reduce the uncertainty
from interpolation (if needed).

Output
PSCF reports the probability that an upwind area contributes to high pollutant

concentrations or source contribution at the downwind receptor site. The
results are often presented as a contour plot on the map. A high
probability usually suggests potential source region (e.g., Figure 4b).

Strengths
● Infer the location of sources or factors relative

to the sampling site.
● Provide verification for the source identification

made by factor analysis method
● Account for air mass transport over hundreds

to thousands of kilometers and on the order of
several days.

● Resolve the spatial distribution of source
strength (qualitatively).

Weaknesses
● Need to generate and analyze the back

trajectory data.
● Need to correct for the central tendency

(residence time always increases toward the
receptor site regardless of source
contribution).

● Uncertainty in back trajectory calculation
increases with its length in time.

● Source contribution depends on not only
trajectory residence time but also entrainment
efficiency, dispersion, and deposition.

● Difficult to resolve the location of more
localized sources.
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Table 1d. (cont.)

Meteorology-Based Method

Receptor Model Description Strengths and Weaknesses

SQTBA117,143

SQTBA requires the calculation
of air parcel back trajectory,
which is often accomplished
using the HY-SPLIT
model.115,139 HY-SPLIT
version 4.5 is available at
http://www.arl.noaa.gov/
ready/hysplit4.html.

Principle
SQTBA is another type of ensemble air parcel trajectory analysis. The concept

of SQTBA is to estimate the “transport field” for each trajectory ignoring
the effects of chemical reactions and deposition. Back trajectories are first
calculated for each sample at the receptor site, and a study domain
containing the receptor site is divided into an array of grid cells. SQTBA
assumes that the transition probability that an air parcel at (x�,y�,t�),
where x� and y� are spatial coordinates and t� means time, will reach a
receptor site at (x,y,t) is approximately normally distributed along the
trajectory with a standard deviation that increases linearly with time
upwind144,145, thus:

Q
x, y, t 
x�, y�, z�� �
1

2	
at��2 exp��
1
2 ��X � x�
t��

at� �2

��Y � y�
t��
at� �2��

(20)

where (X,Y ) is the coordinate of the grid center, a is the dispersion speed,
and x�(t�) and x� (t�) represent the trajectory. The probability field, Q, for a
given trajectory is then integrated over the upwind period, �, to produce a
two-dimensional “natural” (nonweighted) transport field:

Tk
x, y 
x�, y�� �

�
��

0

Q
x, y, t 
x�, y�, z��

�
��

0

dt�

(21)

After the transport field for each trajectory is established, they are weighted
by the corresponding pollutant concentration or source contribution at the
receptor site and summed to yield the overall SQTBA field.117

Data Needs
SQTBA requires the time series of pollutant concentration or source

contribution at the receptor site, and back trajectories initiated over the
site during the sampling period. Trajectories should be calculated with 1-
to 3-hr segment to reduce the uncertainty from interpolation (if needed).

Output

Strengths
● Imply the location of sources or factors relative

to the sampling site.
● Account for air mass transport over hundreds

to thousands of kilometers and on the order of
several days.

● Resolve the spatial distribution of source
strength (qualitatively).

Weaknesses
● Need to generate and analyze the back

trajectory data.
● Need to correct for the central tendency

(residence time always increases toward the
receptor site regardless of source
contribution).

● Need to estimate dispersion velocity.
● Involve complicated calculations.
● Physical meaning of the SQTBA field is

unclear.
● Difficult to resolve the location of more

localized sources.

SQTBA put more weight on trajectories associated higher pollutant
concentration or source contribution and therefore the resulting field may
imply the major transport path.

RTWC146

RTWC requires the calculation
of air parcel back trajectory,
which is often accomplished
using the HY-SPLIT
model.115,139 HY-SPLIT
version 4.5 is available at
http://www.arl.noaa.gov/
ready/hysplit4.html

Principle
As an ensemble air parcel trajectory analysis, RTWC requires back trajectories

calculated for each sample at the receptor site, and a study domain
containing the receptor site divided into an array of grid cells. RTWC
assumes that no major pollutant sources are located along “clean”
(associated with low pollutant concentrations) trajectories and that
“polluted” trajectories picked up emissions along their paths. In practice,
RTWC distributes pollutant concentrations at the receptor to upwind grid
cells along the back trajectories according to the trajectory residence times
in those cells117,146:

Si,k � Sk

resident time in cell i
average residence time in each cell

(22)

where Sk is the pollutant concentration or source contribution determined
upon the arrival of trajectory k and Si,k is the redistributed pollutant
concentration or source contribution for cell i upwind.

RTWC is known for the problem of “tailing effect,” i.e., spurious source areas
can be identified when cells are crossed by a very small number of
trajectories. Although some corrections were proposed147 these approaches
are purely empirical.

Strengths
● Imply the location of sources or factors relative

to the sampling site.
● Account for air mass transport over hundreds

to thousands of kilometers and on the order of
several days.

● Resolve the spatial distribution of source
strength (qualitatively).

Weaknesses
● Need to generate and analyze the back

trajectory data.
● Need to correct for the central tendency and

tailing effect.
● The amount of emission entrainment should

not be proportional to the residence time of
trajectories (so there is no linear relationship
between RTWC field and source strength).

● Physical meaning of the RTWC field is unclear.
● Difficult to resolve the location of more

localized sources.
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C13/C14 for biogenic emissions,49 and selenium (Se) for
coal-fired power plant emissions.50 Water-soluble potas-
sium (K�) and levoglucosan are markers for vegetative
burning, and cholesterol is a marker for meat cooking.
Silicon (Si) and calcium (Ca) enrichments often differ
between local soil and global crustal materials. The num-
ber of sources can be inferred from scatter plots of two or
more species (e.g., Figure 1). Three variants of marker or
tracer solutions are described in Table 1c, namely enrich-
ment factor (EF), non-negative least squares (NNLS), and
fractional aerosol coefficient (FAC). Multiple linear regres-
sion (MLR) is also used for tracer solutions. FPEAK and
Fkey are codes in the PMF program, being used as exam-
ples of such codes in this paper.

The component n in eq 1 allows source contribution
estimates to be classified by transport direction, thereby
allowing a further limitation on the possible contributors.
For daily or longer sample durations, this has not been very
accurate because the transport patterns usually change sub-
stantially within the day. However, several Supersite exam-
ples show relationships of receptor concentrations to long-
range transport occurring over several days. Transport
classification becomes more reasonable with shorter sample
durations such as those achieved from several of the contin-
uous speciation methods. The conditional probability func-
tion (CPF) and nonparametric regression (NPR) use only
local wind direction and wind speed data measured near the
surface, whereas trajectory sector analysis (TSA), potential
source contribution function (PSCF), simplified quantitative
transport bias analysis (SQTBA), and residence time-
weighted concentrations (RTWC) use air parcel back trajec-
tories calculated often by the hybrid single-particle Lagrang-
ian integrated trajectories (HY-SPLIT) model for large-scale
transport (see descriptions in Table 1d).

RECEPTOR MODELING PROCEDURES
Reff et al.51 suggest three steps: (1) preparing data to be
modeled, (2) processing the data to develop a feasible and
robust solution, and (3) interpreting the results. These are
included in the eight-step procedure recommended by
Watson et al.,37 providing a framework for most Supersite
source apportionment studies:

Step 1: Form a Conceptual Model
As the first step, receptor modelers must establish concep-
tual models52 that provide qualitative descriptions of the
number and types of sources that might affect a receptor.
The conceptual model should guide the siting of measure-
ment systems, the variables to be measured, and the sam-
pling periods and durations. Unfortunately, receptor
models are usually applied to data available from net-
works that were designed for other purposes, but they
have always added value to these measurements.

Step 2: Compile Emissions from Emission
Inventories

Receptor models need to be supplied with sources that are
potential contributors. A receptor model inventory re-
quires only source types, not the locations and emission
rates of specific sources, although the locations and emis-
sion rates of point sources help interpret the receptor
model results. Source profiles should be closely associated
with the specific emission sources, and generic source
profiles acquired from other locations should be used
only as a last resort. The lack of representative source
profiles for a large number of chemical species and cost-
efficient means of acquiring these profiles was not well
addressed during the Supersites Program, but some
progress was made.

Step 3: Characterize Sources and Source Profiles
More than 1000 measured source profiles for geological,
motor vehicle, industrial, vegetative burning, and cook-
ing emissions for different PM size fractions were com-
piled and made available as part of EPA SPECIATE Version
4 database (www.epa.gov/ttn/chief/software/speciate/).10

More specific source markers need to be accurately and
efficiently measured at source and receptor to improve
SCEs for all of the models. Thermally derived C frac-
tions,53–56 which are a free byproduct of thermal/optical C
analyses, have been found useful for distinguishing be-
tween diesel exhaust and other C source types.57–61 For
example, high-temperature EC (e.g., EC2, EC evolved at
740 °C in a 98% helium [He]/2% oxygen [O2] atmo-
sphere) dominates particulate emissions from diesel en-
gines.54 Specific organic markers (Table 2) have also
proven useful in PMF modeling studies,63–66 but advances
are needed to make them more available in source and
receptor samples.61

Modern PM source profiles that include organic com-
pounds were obtained and applied for source apportion-
ment at Fresno64 and Pittsburgh.67–69 Figure 2 illustrates
some of these source profiles that contain at least 35 com-
mon species (elements, ions, and thermal C fractions) as
well as 25 organic markers. How the markers are used to
distinguish various source emissions is tabulated in Tables 2
and 3.

Step 4: Create a Material Balance for Each
Sample and Site

Reconstructed mass is a weighted sum of species (i.e.,
sulfate [SO4

2� ] nitrate [NO3
�], ammonium [NH4

�; where
available], geological material [with elemental multipliers

Figure 1. Scatter plot of concentrations of two species. These are
real concentrations measured at Fort Meade, MD, between July
1999 and July 7, 2001.118 The x-axis is 24-hr SO4

2� and y-axis is
24-hr Se. The unit is �g/m3. The clear edges indicate two sources
with different SO4

2�/Se ratio.
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to account for unmeasured oxides]), EC, and organic car-
bon (OC; weighted by a multiplier to account for unmea-
sured hydrogen, oxygen, and other elements). The recon-
structed mass is compared with gravimetric mass often
measured on Teflon-membrane filters. Excesses or deficits
in mass indicate unidentified species and/or potential
measurement errors. Mass closure should be part of a data
validation procedure that also includes cation/anion bal-
ance and comparison between different measurement
techniques for duplicate species (e.g., sulfur [S] and chlo-
rine [Cl] by X-ray fluorescence [XRF] vs. SO4

2� and chlo-
ride [Cl�] by ion chromatography; potassium [K] and
sodium [Na] by X-ray fluorescence vs. water-soluble K�

and sodium [Na�] ions by ion chromatography or atomic
absorption spectroscopy).70

Data validation allows receptor modelers to identify
outliers that should be excluded from model inputs.44,71

Uncertainty estimates may need to be adjusted, because
analytical uncertainties may not reflect the true uncer-
tainty. As described in Table 1, a and b, the effective
variance and PMF solutions use uncertainties as input
data. The PMF solution needs more adjustment because it

does not use source profile uncertainties, which usually
dominate the weighting in the effective variance solution.
Measurement precision (i.e., based on analytical mini-
mum detectable limit [MDL] and replicate analysis) alone
does not account for source profile variability. A poor
mass closure for lightly loaded samples may result from
insufficient adjustments for organic sampling artifacts.71–73

Because back-up filters are not always available allowing for
an accurate correction and error propagation for the sam-
pling artifact, a larger uncertainty may be assigned to OC,
total carbon (TC), and PM mass measurements.

Step 5: Descriptive Data Analysis
Descriptive data analysis summarizes the data (i.e., max-
imum, minimum, mean, median, 98th percentile by site,
year, and/or season) and may also include time series
plots, temporal correlations, spatial correlations, and
principal component analysis.74 Data analysis should
identify samples of special interest (e.g., air quality stan-
dard exceedances), similarities and differences among
measurement locations, and potential modifications to

Table 2. Summary of organic marker species for major PM2.5 sources.64,74

Organic Aerosol Sources Highly Specific Organic Markers
Important Organic

Markers

Natural gas combustion PAHs
Gasoline-powered engine exhaust Hopanes and steranes

PAHs
EC

Diesel engine exhaust Hopanes and steranes
EC

Fuel oil combustion Hopanes and steranes
EC
Ni
V

Coal combustion–uncontrolled Picene Hopanes and steranes
PAHs
EC

Biomass burning Levoglucosan Resin acids
Methoxyphenols

Meat cooking Cholesterol Tetradecanoic acid
Pentadecanoic acid
Hexadecanoic acid
Heptadecanoic acid
Octadecanoic acid
Palmitin
Palmitoleic acid
Oleic acid
Stearin

Vegetative detritus n-Nonacosane
n-Triacontane
n-Hentriacontane
n-Dotriacontane
n-Tritriacontane

SOA 1,2-Benzenedicarboxylic acid
Methyl-1,2-benzenedicarboxylic acid

Not well defined

Cigarette smoke Iso-nonacosane
Anteiso-triacontane
Iso-hentriacontane
Anteiso-dotriacontane
Iso-tritriacontane

Notes: PAH � polycyclic aromatic hydrocarbon; SOA � secondary organic aerosol.
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the conceptual model. High correlation coefficients usu-
ally indicate origin from a common source or effects of
common meteorology on several sources. High spatial
correlations among chemical components indicate urban
or regional source influences, whereas low correlations
indicate influences from more local emitters.

Step 6: Calculate Source/Factor Contributions
Input data should be selected, documented, and format-
ted for model input in such a way that they are available
for others to understand and use them for verification.
Many of the reported receptor model results are not re-
producible by others, especially for UNMIX and PMF so-
lutions, because the datasets are not sufficiently docu-
mented. Reff et al.51 point out inconsistencies in the
literature regarding the preparation of data and uncer-
tainty matrices for PMF. These include the treatment of
duplicate measurements and values that are missing or
below MDL. Several equations that are functions of con-
centrations, analytical precisions, and MDLs have been

used to create the uncertainty matrix. Kim and Hopke75

point out that analytical precisions are estimated differ-
ently by different laboratories, thereby influencing the
PMF results. The variability in source profiles (i.e. �Fijm), is
not considered explicitly in UNMIX and PMF solutions,
although source factor uncertainties can be assigned by
bootstrapping methods.76,77

UNMIX, PMF, and effective variance CMB software
offer several solution options (e.g., robust vs. nonrobust),
species included, number of factors or profiles, and soft-
ware implementation78 that result in different results
from the same data. Receptor model solutions can be
unstable (i.e., multiple or no solutions) when two or more
source profiles are similar, or when ambient concentra-
tions are highly correlated in time and space owing to
similar meteorological transport and dispersion.79,80 The
assignment of a source factor to a source type often rep-
resents a stretch of the imagination when compared with
measured source profiles. Therefore, sensitivity tests that

Figure 2. Source profiles of: (a) paved road dust (PVRD), (b) gasoline vehicle exhaust (GAS), (c) diesel vehicle exhaust (DIESEL), (d) cooking
(COOK), and (e) RWC (BURNING) used for the Fresno Supersite PM2.5 apportionment.64 Uncertainties (UNC) of the profiles are indicated by
triangles. Indeno[123]:Indeno(1,2,3-cd)pyrene; Benzo(g,h,i) p: Benzo(g,h,i) perylene; Ster35: C27-20S-13�(H),17a(H)-diasterane; ster45: C27-
20R5a(H),14a(H),17a(H)-cholestane and C29-20S13�(H),17a(H)-diasterane; ster48: C28-20S5a(H),14�(H),17�(H)-ergostane; ster49: C28-
20R5a(H),14a(H),17a(H)-ergostane; hop17: 17a(H),21�(H)-30-Norhopane; hop19: 17a(H),21�(H)-Hopane; hop24: 22S-17a(H),21�(H)-30,31-
Bishomohopane; hop26: 22S-17a(H),21�(H)-30,31,32-Trisomohopane.
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assess variability of the results because of different com-
binations of sources and/or species in the model are
important. Performance measures, such as variance ex-
plained (r2) and residual (�2) of measured-versus-calculated
concentrations help validate model outputs.81 Many dif-
ferent calculations need to be made before “the best”
results are reported in reports and publications.

Step 7: Evaluate Limiting Precursors of
Secondary Aerosol

Source characteristics may change during transport to a
receptor, the most common being changes of sulfur diox-
ide (SO2) and oxides of nitrogen (NOx) gases to SO4

2� and
NO3

� particles as well as the Cl� depletion of the sea-salt
aerosol. These changes can be simulated with aerosol evo-
lution models.82 Secondary ammonium sulfate ([NH4]2SO4)
and ammonium nitrate (NH4NO3) involve ammonia (NH3)
from noncombustion sources that may be a limiting precur-
sor. Reductions in SO4

2� might increase NH4NO3 concen-
trations by freeing up NH3.83 Chemical equilibrium receptor
models determine the extent to which one precursor needs
to be diminished to achieve reductions in NH4NO3 levels.
The potential effects of planned sulfur reductions can be
addressed from Supersite measurements.84 Using an obser-
vational (i.e., receptor) box model, Vayenas et al.85 esti-
mated that a 50% reduction of SO4

2� in winter would lead

to only an 8% reduction in PM2.5 mass concentration in
Pittsburgh. For a 50% reduction in NH3 availability, PM2.5

would be reduced by 29%.

Step 8: Reconcile Source Contributions with the
Conceptual Model and Report Uncertainties in

the Source Contribution Estimates
A receptor analysis can be considered valid when: (1) the
receptor model is determined to be applicable; (2) the
performance measures are within target ranges; (3) there
are no large deviations from model assumptions; (4) sensi-
tivity tests reveal acceptable instability or consistency prob-
lems; and (5) there is consistency with the conceptual
model, or reasonable modifications to the conceptual model
are revealed.38 Receptor modelers need to resist the tempta-
tion to propose implausible reasons for their results that
have not been verified by other means: doubting the source
contribution estimates rather than picking the best ones,
and using discrepancies between different sets of input data
and model parameters to estimate uncertainties.

An example of sensitivity testing for PM2.5 source
apportionment at Fresno64 is given in Table 4. Initial
tests with different combinations of source profiles
were done to determine which profiles best explain the
data. This test reveals that including organic markers in
the single sample CMB solution improves the distinc-
tion between gasoline and diesel vehicle emissions and

Table 3. Summary of inorganic marker species for major PM2.5 sources.148

Source Descriptions Marker Species

Road dust Paved and unpaved road dust by traffic Al, Si, K, Ca, Fe
Fugitive windblown dust Farm lands; pasture lands; unpaved roads Al, Si, K, Ca, Fe
Construction and demolition Building; road construction dust Al, Si, K, Ca, Fe
Farming operations Tilling, harvesting, and growing; livestock OC, NH3, NH4

�

Mobile On-road gasoline and diesel vehicles; off-road mobile OC, EC, EC1a, EC2a, NH3, S, Fe, Zn
Cooking Indoor and outdoor cooking OC, EC
Fires Wild forest fires OC, EC, K�, Cl�

Waste burning and disposal Agriculture burning; incineration; prescribed burning OC, EC, K�, As, Pb, Zn
Industrial fuel combustion Electric utility, cogeneration, oil and gas production; petroleum refining; manufacturing and

industrial; food and agriculture processing; service and commercial
SO4

2�, Se, V, Ni, OC, EC

Residential fuel combustion Wood combustion; cooking and space heating OC, EC, K�, Cl�

Industrial processing Chemical; food and agriculture; mineral processes; metal processes; wood and paper;
glass and related products; electronics

Zn, Pb, Cu, Mn, As, Hg

Sea salt Marine aerosol Na�, Cl�

NH4NO3 Secondary aerosol NO3
�, NH4

�

�NH4
2SO4 Secondary aerosol SO4
2�, NH4

�

SOA Secondary aerosol OC

Notes: aEC1 and EC2 are the EC fractions evolved at 740 and 840 °C in a 98% helium/2% oxygen atmosphere, following the IMPROVE_A protocol.54

Table 4. Sensitivity test for source apportionment at the Fresno Supersite.

Source Contribution Estimates (�g/m3)

Case PVRD GAS DIES BURN-H BURN-S COOK MARINE AMSUL AMNIT PMASS r2 �

1a 0 1.9 � 1.3 4.4 � 1.5 16 � 3 5.8 � 6.2 20 � 5 0 1.1 � 0.4 18 � 2 89 0.96 0.6
2b 0 0 4.8 � 1.5 15 � 3 7.0 � 6.4 23 � 6 0 1.3 � 0.3 18 � 2 90 0.98 0.7

Notes: These trial runs apply to average concentrations for the 12:00 a.m. to 5:00 a.m. Pacific Standard Time samples during the winter intensive period.65

PVRD � paved road dust (PVRD); GAS � gasoline vehicle exhaust; DIES � diesel vehicle exhaust; BURN-H � hardwood burning; BURN-S � softwood burning;
COOK � cooking; AMSUL � secondary ammonium sulfate; AMNIT � secondary ammonium nitrate. r2 and � are performance measures. aWith organic markers;
bwithout organic markers.
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allows a more precise estimate of the cooking source
contribution. However, organic markers were not re-
quired to precisely estimate the RWC contribution and
did not increase the precision of the softwood burning
contribution, even though there were differences
among the hardwood and softwood RWC markers such
as levoglucosan, 4-allyl-guaiacol, and syringaldehyde.

As noted before, personal judgment is used to link
UNMIX and PMF source factors with measured source
profiles, and the rationale for these judgments is not
always apparent. It usually relies on the presence or ab-
sence of reported organic and inorganic source markers
such as those identified in Tables 2 and 3. However, some
of the source factors contain multiple markers that indi-
cate a possible mixing of several source types. Alterna-
tively, there is a factor with a single marker (i.e., the
famous “zinc [Zn]-rich” factor) that can only remotely be
related to a single source (the Zn-rich factor is often at-
tributed to tire wear or incineration, even though one
would expect other markers to come from these source
types). UNMIX and PMF source factors need to be accom-
panied by a plausibility analysis, in which the source
factors are compared with measured source profiles before
they are assigned to a source type.

When the Tijklmn in eq 1 is assumed to equal one, or
a constant for all transport directions, actual variability of
the source profiles in space and time can still influence
the outcome. This usually leads to unacceptable r2

and/or �2 and unrealistic source apportionment re-
sults.86 In those cases, receptor model inputs can be
confined within a shorter period and/or a smaller area.
Chen et al.45 observed that seasonal variability for
PM2.5 source profiles was larger than spatial variability
around Fresno. They used speciated PM2.5 data from 23
sites in California’s central valley for winter and non-
winter period UNMIX and PMF solutions. They found
that derived source factors were more similar to mea-
sured profiles than would be obtained from year-long
samples at a single location. This is consistent with
Cadle et al.,87 who found different motor vehicle source
profiles (in terms of OC/EC ratios) between summer and
winter, attributable to larger contributions of cold starts
during winter. Chen et al.45 evaluated source appor-
tionment results based on: (1) site-specific residuals
between the measured and calculated concentrations;
2) comparability of motor vehicle and RWC factors
against source profiles obtained from emission tests; (3)
spatiotemporal variations of the factors’ strengths; and
(4) edges in bi-plots of key marker species. Clear edges
in the OC versus EC scatter plot (Figure 3) correspond
to the PMF motor vehicle, RWC, and cooking factors.

HOW WELL CAN WE IDENTIFY AND
QUANTIFY SOURCE CONTRIBUTIONS USING
RECEPTOR MODELS?
Source apportionment studies carried out as part of the
Supersites Program are summarized in Table S-1 published
online at http://secure.awma.org/journal/pdfs/2008/2/
10.3155-1047-3289.58.2.265_supplmaterial.pdf. It was
intended that these studies would take advantage of the
comprehensive Supersite measurements at various time
resolutions88,89 and attempt to use appropriate modeling

techniques. SCEs were made for several PM size fractions
and for VOCs. UNMIX and PMF solutions were applied,
with the reason given that source profiles were not avail-
able. Several of the studies applied more than one of the
UNMIX, PMF, and CMB solutions to the same or similar
datasets and used the similarities and differences to eval-
uate the accuracy and precision of the SCEs. Table 5
compares results from different studies.

PM at the eastern Supersites (e.g., Baltimore, New
York, Pittsburgh, and St. Louis) was dominated by second-
ary (NH4)2SO4, mostly deriving from the Midwest. Fugi-
tive dust contributions to PM2.5 were small, and second-
ary NH4NO3 contributions were variable, with higher
values in winter. The highest C concentrations were often
found when there was influence from wildfires, such as
those in Canada.90 SOA was determined to be an impor-
tant contributor on the basis of the enrichment of OC
over the presumed EC contribution from primary sources.

Intermodel Comparability
PM2.5 source apportionment was conducted for the Pitts-
burgh Supersite with UNMIX,65 PMF,65,91 and ME.46

These solutions used different measurements as input for
the July 2001 to July 2002 study period. UNMIX used
fewer species (12) than PMF (22) because PMF solutions
could give less weight to outliers that biased the UNMIX
solution. Pekney et al.65 reported six common factors: (1)
crustal material (Ca, titanium [Ti], iron [Fe]); (2) NO3

�; (3)
SO4

2�; (4) manganese (Mn)/Fe/Zn; (5) specialty steel
(chromium [Cr], molybdenum [Mo]); and (6) cadmium
[Cd]. An additional four factors, represented by gallium
(Ga), lead (Pb), Se, and primary OC/EC, were identified by
PMF. The UNMIX factors explained nearly 100% of PM2.5

mass whereas PMF factors accounted for 78% of PM2.5.
The mobile source category was not found by the UNMIX
solution, even though vehicle exhaust probably contrib-
utes at any urban site. The primary OC/EC factor from
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Figure 3. PM2.5 OC vs. EC concentration by site (a total of 23
sites) in California’s San Joaquin Valley during the high_PM2.5 pe-
riod (November–January). Data were collected as part of the Cali-
fornia Regional PM10/PM2.5 Air Quality Study (CRPAQS).74 Solid
lines indicate the OC/EC ratios for the motor vehicle (MV), RWC, and
cooking factors determined by PMF analysis.45 Clear edges suggest
that source profiles are consistent among different sites.
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PMF accounted for 88 and 9% of ambient OC and EC,
respectively, which was assigned to the motor vehicle
source type. Most of the OC and EC was distributed
among the other factors in the UNMIX solution.

Comparisons of UNMIX and PMF SCEs at the Fresno
Supersite during the California Regional PM10/PM2.5 Air
Quality Study (CRPAQS)45 also found that fewer input
species could be used for a stable UNMIX solution. Nev-
ertheless, the UNMIX and PMF source factors, their asso-
ciation with measured source profiles, and SCEs agreed.
Compared with Pittsburgh, much more PM2.5 in the cen-
tral California valley came from secondary NH4NO3, veg-
etative burning, and farming activities. The mobile source
factor was evident in both the UNMIX and PMF solutions.

The contrast between the Fresno and Pittsburgh re-
sults show the danger of extrapolating agreement be-
tween different solutions from one situation to others.
The application of UNMIX and PMF solutions in Fresno
gives more confidence to both sets of results, which are
also consistent with the organic marker CMB solution at
Fresno during winter.64 The discrepancies found in Pitts-
burgh are just as valuable, because they indicate a larger
uncertainty in the SCEs that needs to be considered by
decision-makers.

Pekney et al.65 enhanced their analysis by including
organic markers in the PMF model. A few organic classes
have been shown to be effective source indicators, includ-
ing hopanes for vehicle exhaust, levoglucosan for vegeta-
tive burning, and n-alkanes for vegetative detritus (Table

2). Because organic markers were not measured in all
samples at Pittsburgh (e.g., 24% of the sampling days),
gaps were filled with the geometric mean concentration
and assigned an uncertainty of four times the average
precision, as suggested by Polissar et al.92,93 Although the
effect of this approximation has not been systematically
evaluated, Pekney et al.65 found that all of the hopanes
were correlated with a primary OC/EC factor, and this was
assigned to mobile source emissions. The final PMF solu-
tion contained 11 factors, with the primary OC/EC factor
split into two factors: one associated with vehicle exhaust
and road dust, and the other associated with vegetative
burning, cooking, and vegetative detritus. These two fac-
tors usually cannot be separated based only on elemental,
ionic, and thermal C fraction measurements.

Robinson et al.67–69 demonstrated that the ratio of
marker species in a source profile, when compared with
those from the same and/or different source types and
from ambient samples, help interpret the source variabil-
ity and suggest the most important sources in a region.
The comparison of the ratio of Benzo(g,h,i)perylene/
Benzo(e)pyrene against the ratio of Indeno(1,2,3,-cd)-
pyrene/Benzo(e)pyrene (in a ratio-ratio plot) at Pittsburgh
most resembled ratios from coke (coal product) production,
suggesting influence from nearby coke plants. Contribu-
tions from up to three distinct sources and the atmo-
spheric aging of single source profiles was implied from
ratio-ratio plots, thus providing some indication of Tijklmn

Table 5. Comparison of source/factor contributions to PM at Supersites.

Locations Model Marine
Crustal

Material
Motor

Vehiclea
Gasoline
Vehicle

Diesel
Vehicle

Biomass
Burning Cooking

Secondary
Sulfate

Secondary
Nitrate

MISC
1

MISC
2

MISC
3

PM2.5

(�g/m3)

Pittsburgh65 UNMIX 13 68 14 4f 1g 1h

Pittsburgh65 PMF (13) 11 (3) (68) (14) (4f) 2i 2j

Pittsburgh46 ME k k k k k k,l g,k
Pittsburgh48 (OC) PT(EC) 25e

Fresno (23-site average in the
SJV)—winter45 UNMIX 0 3 15 24 5 51 2b 42.2

Fresno (23-site average in the
SJV)—winter45 PMF 0 5 10 23 3 48 2b 9c 42.2

Fresno winter101 CMB 0.1 0.1 8 6 31 5 2 32 72
Fresno winter episode I101 CMB 0 3.8 12.7 63.1 13 3.4 27.7 1.4d 3.1e 76.4
Fresno winter episode II45 CMB 1.8 1.9 9.3 26.6 2.7 7 44.1 7.5e 55.3
Fresno (23-site average in the

SJV)—non-winter45 UNMIX 10 16 25 5 38 5b 8.4
Fresno (23-site average in the

SJV)—non-winter45 PMF 7 19 13 9 7 36 4b 6c 8.4
Houston63 CMB 10.6 12.8 17.3 1.5 5.9 2.1m 6.7n 21.6
Houston—midday149 CMB 4.8 17.8 64.9 99
Houston—afternoon149 CMB 5.5 28 65.3 103
Houston106 (OC) PT (EC) 5–10e –
Baltimore—summer episode96 PMF 3.5 8.1 1.9 30.9 14.7 18.6 10.3j 2.9n 7.9o

Baltimore118 UNMIX 15 13 45 17 8j 2p 13
New York150 PMF 14.6 35 4.4 64.6 10.8 9.1n 11.8
New York—rural151 PMF 14.6 8.8 56 9.2 2.0q 2.0c 4.2r

St. Louis152 PMF 4.2 16.4 2.1 52.2 15.3 0.5q 1.3c 6.8g 16.1
St. Louis—STN site A153 PMF 15.4 17.2 39.9 19.7 3.4q 3.0c 0.3g 16.4
St. Louis—STN site B153 PMF 3.2 21.1 5 2.4 36.1 12.9 11.6s 2.6p 3.2i 15.5
Atlanta154 PMF 3.1 5.3 11.6 22 29.4 9.2 1.6j 6.9p 16.7

Notes: Contributions are presented as percentage (%) of PM2.5 mass concentration (in �g/m3). Numbers in parentheses are estimated values. A question mark
indicates unreported values. PT � primary tracer method; MSC1–3 � miscellaneous sources. aCombined gasoline and diesel vehicle exhaust; bdairy; czinc;
dnatural gas combustion; esecondary organics; fFe, Mn, Zn; gspecialty steel; hCD; iPb; jSe (coal burning); kunknown or undetermined contribution; lcoke plant;
mvegetative detritus; noil combustion; oincinerator; pindustry; qcopper smelter; rnickel smelter; and sCa.
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in eq 1. These sources are not necessarily major contrib-
utors to PM2.5 or OC mass, but they may be important
hazardous air pollutant contributors.

Source apportionment using only organic markers
did not quantify vegetative burning contributions in
Pittsburgh. There were no strong correlations among
three organic markers for vegetative burning: levoglu-
cosan, resin acids, and syringhaldehyde at Pittsburgh.68

Robinson et al.68 attribute this to the poorly controlled,
highly variable nature of biomass combustion. They esti-
mated that vegetative burning contributed approximately
10% of OC in winter. Chow et al.64 observed that organic
markers were not critical for resolving biomass burning
contributions in Fresno as long as K� was included in the
effective variance solution.

Cooking contributions were reported in a few studies
using organic markers.64,69,94 Robinson et al.69 identified
three uncertainty areas for cooking contributions at Pitts-
burgh: (1) the markers (e.g., palmitoleic acid and choles-
terol) were highly uncertain and variable in the reported
source profiles; (2) the ambient oleic acid/palmitoleic acid
ratio was more than a factor of 10 greater than all pub-
lished source profiles in Pittsburgh; and (3) three source
profile combinations yielded equally good performance
statistics, but cooking contributions varied by a factor of 9
(3–27% of OC). Chow et al.64 estimated cooking contri-
butions of 5–19% of PM2.5 at Fresno during winter epi-
sodes with very large propagated uncertainties.

Organic markers appear to be useful for separating
vegetative burning and fossil fuel combustion using PMF.
They might also further distinguish gasoline, diesel, and
cooking contributions, as suggested by Chow et al.64

Zhou et al.46 analyzed high-time resolution mea-
surements with ME at Pittsburgh during July 2001. As
the time resolution increases, sufficient data for the
analysis can be acquired in a relatively short time pe-
riod during which variations in source characteristics
are minimal. However, the study period also needs to be
long enough to capture variability in source contribu-
tions. ME2, rather than PMF, was used to analyze data
from instruments with different sampling durations.
Estimated source contributions were averaged to a con-
sistent measurement interval. This can only be
achieved under the framework of ME2. The analysis
used 24 inorganic species and identified six sources,
including motor vehicles, geological dust, steel mill,
NO3

�, SO4
2�, and coke plant. These factors generally

agreed with those derived by Pekney et al.65 The coke
plant, which was characterized by Cr and copper, may
be equivalent to “specialty steel.” The CPF and NPR
analyses conducted with this study, however, were not
very useful, because prevailing southwest to southeast
winds dominated throughout the study period.

Use of Size Information
UNMIX was applied to particle size distributions by Kim
et al.95 Zhou et al.91 attempted to analyze particle size
distribution data with PMF. It is assumed that particles
from different sources may have characteristic size distri-
bution profiles (i.e., using i in eq 2 to represent size in-
stead of chemical profiles). Particle size data was selected
to exclude periods of particle growth. Five factors were

found at Pittsburgh: (1) secondary � primary combustion
aerosol; (2) stationary combustion sources; (3) remote
traffic; (4) local traffic; and (5) local particle nucleation.
These factors were identified by associations with temper-
ature, trace gas pollutants, and transport direction. The
first two factors accounted for more than 90% of the
particle volume. However, it was difficult to link the fac-
tors to major sources resolved by PMF applied to chemical
concentrations, such as NO3

�, SO4
2�, fugitive dust, and

industrial source types. Owing to a lack of size specific
source profiles, it is uncertain that the two approaches
yielded “the same” factors. Zhou et al.91 conclude that the
“size” factor analysis, by itself, was limited when com-
pared with “standard” receptor modeling based on chem-
ical speciation.

It may be useful to combine chemical composition
and size distribution data in receptor models, as indi-
cated in eq 1. Ogulei et al.96 demonstrated how this
could be done in two ways. First, particle concentra-
tions in various size intervals (bins) and species concen-
trations were pooled as PMF input variables. Twelve
factors resolved for Baltimore PM2.5 contained not only
fractional abundances of chemical species, but also the
number of particles in each size bin per unit PM2.5 mass
emitted. The NO3

� factor displayed a larger mean par-
ticle size than did the SO4

2� factor, although it is un-
certain whether NO3

� is associated with sea salt or dust
(neither Na nor Ca were included in the solution).
Ultrafine particles were associated with gasoline and
diesel exhaust, but not vegetative burning. It appears
that particle size distributions can help to identify
sources. The second approach involved the PLS solu-
tion, which sought to identify common factors in time
series of chemical concentrations and particle size dis-
tributions. Ogulei et al.96 identified four factors (latent
variables) but the physical significance of those factors
was unclear. PLS can be used to determine the degree of
dependence between two variables (e.g., size, chemical
composition, or meteorology) and whether they can be
combined into a receptor model analysis.

New Receptor Model Development
The PDRM is a hybrid source and receptor solution. A
Gaussian dispersion model calculates the pollutant
concentrations at receptors based on the emission rates
and stack configurations of upwind stationary sources.
PDRM uses the results from this model as a constraint
to the factor analysis (e.g., Tijklmn in eq 1 may be zero
for some sources that are not in sector n). PDRM is most
suitable for analyzing pollutants dominated by local
stationary sources with high-time resolution (sub-
hourly) measurements compatible with the fast-chang-
ing meteorology. Park et al.97 used the PDRM to at-
tribute ambient SO2 at Sydney, FL, to six stationary
sources (i.e., two coal-fired and two oil-fired utility
plants, one fertilizer, and one incinerator), and esti-
mated SO2 concentration and source emission rates
within 10% of measured values. Agreements were not as
good for some elements, such as Aluminum (Al), Zn,
and Pb, possibly because of other small emitters or
varying background levels. Application of PDRM to SO2

and elemental concentrations at Pittsburgh showed
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similar performance.98 This application illustrates that
direct plume impacts contribute negligible amounts to
PM2.5, which was probably not the case before substan-
tial efforts were invested in cleaning Pittsburgh’s air.99

PDRM demonstrates the limitations of receptor models
applied to integrated 24-hr measurements. The average
wind speed or mixing depth would not be correlated
well with the average SCEs. Emission rates may show
diurnal and daily variability as well.

Quantification of SOA
Attempts were made to quantify SOA contributions.
Pandis et al.100 noted that “Primary carbonaceous aero-
sols dominate during the winter in the east, while SOA
is an important contributor during the summer (ap-
proaching 40% of the OC) with higher contributions
observed during O3 episodes (approaching 80% of the
OC).” However, SOA is not always resolved by UNMIX,
PMF, or ME solutions to eq 1 or 2. Most input data
consist of elements, ions, and C that are not specific to
SOA end products.

SOA was estimated from the difference between the
measured OC and the sum of OC from identified
sources. Schauer and Cass101 found that an effective
variance CMB solution with seven sources (vegetative
burning, gasoline, diesel, meat cooking, road dust, nat-
ural gas combustion, and vegetative detritus) explained
approximately 80% of OC at Fresno during a winter
episode but not more than 25% of OC at the Kern
Wildlife Refuge, a rural site south of Fresno. The unex-
plained OC was classified as SOA, although there may
have been changes in the source profiles with aging and
transport. Alternatively, SOA may be represented by a
“single constituent source profile” containing only
OC.35,102,103 It accounts for OC not associated with any
other sources and leads to results similar to those of
Schauer and Cass.101

A tracer solution CMB was tested by Gray et al.104

using EC as the marker for primary source types.105 As-
suming that primary OC and EC concentrations are cor-
related at a specific location because they have common
sources, SOA is estimated as:

OCpri � Z � 
OC/EC�pri � EC (23)

OCsec � OCtot � OCpri (24)

Because both OC and EC originate from multiple
sources, (OC/EC)pri represents an average OC/EC ratio
(i.e., enrichment factor) that varies in time and space. Z
is sometimes referred to as “background” OC, which
may come from noncombustion sources.106 In some
studies, (OC/EC)pri was determined from the regression
slope of the lowest 5–10% of OC and EC concentra-
tions.107,108 This approach may be appropriate for large
datasets in which SOA concentrations are nearly zero in
some of the samples. Russell and Allen106 used indepen-
dent criteria to select samples to derive a representative
(OC/EC)pri ratio for the Houston area. They first used O3

concentration as an indicator of SOA formation and
used only daily data with a maximum O3 concentration

less than 40 ppb. Second, they excluded samples con-
taining high concentrations of K and NOx on the basis
that these were contaminated by extreme events such
as vegetative burning and O3 scavenging. Data with
irregular OC/EC ratios were also eliminated.

For Pittsburgh, Cabada et al.48 estimated (OC/EC)pri

from a local emission inventory for 1995. On the basis
of the monthly total OC and EC emissions, they esti-
mated (OC/EC)pri ranging from approximately 1.1 in
summer to more than 2 in winter, reflecting the in-
crease of vegetative burning during colder months. Two
empirical adjustments were made in the use of eqs 23
and 24: (1) conversion of OC and EC concentrations
determined with the thermal/optical reflectance
(TOR)53,54 method to equivalent OC and EC for the
National Institute for Occupational Safety and Health
(NIOSH) thermal/optical transmittance (TOT) method
according to Chow et al.109 so that they are comparable
to source measurements with the NIOSH method; and
(2) correction of local OC and EC concentrations with
uniform background OC and EC concentrations of 2.9
and 0.5 �g/m3, respectively.

Cabada et al.48 estimated SOA contributions to OC
ranging from negligible in winter to approximately 50%
in summer. This is consistent with a conceptual model of
lower photochemical activity and gaseous precursor con-
centrations in winter. For the PMF solution,65 unidenti-
fied mass was also much higher in summer than in winter
(when it was negligible). Although the question of
whether the unidentified mass indicates SOA warrants
further investigation, this example illustrates the value of
applying multiple source apportionment approaches at
the same site.

If emission inventories of SOA precursor gases are
available, SOA formation may be estimated using the FAC
(Table 1c). Dechapanya et al.110 used the FAC developed
by Grosjean and Seinfeld111 and Grosjean et al.112 to es-
timate SOA production in Houston. Although this model
is relatively simple, the use of a constant value for the FAC
ignores variability in reactivity under different condi-
tions. One may fine-tune the FAC with a gas/particle
partitioning model that considers the total PM mass.
Dechapanya et al.110 compared the SOA and EC produc-
tion rates, determining an annual average SOA concen-
tration of less than 5 �g/m3.

Using primary EC in a CMB tracer solution, Russell
and Allen106 estimated SOA as C concentrations ranging
from 0.65 � 1.11 to 1.15 � 1.52 �g/m3 in Houston, which
was approximately 25% of the PM2.5 OC. As SOA was not
included in the CMB calculations in Houston, calculated
mass was lower than the measured mass most of the
time.63

Wind and Back Trajectory Analysis
Wind directions and back trajectories are often comple-
ments to different receptor model solutions (Table 1d).
The advantage is that specific sources within a source
type with similar chemical characteristics can be iden-
tified. Evaluating conditions along a transport pathway
(e.g., cloudy, sunny, and dry) can help to estimate
changes in source profiles (Tijklmn in eq 1) during trans-
port. Zhou et al.46 found the CPF analysis sometimes
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misleading because: (1) there are many directions with
very few (or no) wind occurrences; and (2) the distribu-
tion of concentrations is far from normal, with a small
number of very large values. Figure 4a shows the CPF
analysis for a Se factor resolved by PMF at Pitts-
burgh.65,113 This factor tends to be associated with
southeasterly winds (the dominant wind direction dur-
ing the study period), whereas there are important Se
sources located southwest of the site. In this case, wind
speed and boundary layer depth might be more rele-
vant to the pollutant concentration. CPF does not pro-
vide a measure of confidence in the probability distri-
bution. NPR does not generate more information than
CPF but provides a quantitative estimate of uncertainty.
It confirms that many directional signals at this site are
associated with uncertainties equal to or greater than
their magnitudes, and therefore these signals are not
significant.46

Back trajectories differ from surface winds in terms
of spatial and temporal scales. The back trajectory is
probably a better representation of prevailing wind di-
rection if the chosen starting point is above the bound-
ary layer. Back trajectories do not resolve surface wind
directions and they often do not represent nighttime
transport and mixing when a shallow surface layer of-
ten forms. Their uncertainties increase substantially
with time.114,115 The TSA method used to identify
source regions for SO4

2� and trace elements in New
York state assumed that local source contributions were
independent of back trajectories (or prevailing wind
directions).50,116 This assumption contradicts assump-
tions of CPF and NPR, that is, local source contributions
depend on wind patterns. Both can only be correct
when there is no correlation between the surface and
prevailing wind, and in that case, CPF/NPR only works
for local sources and TSA only works for distant sources.
In the real world, the accuracy of both approaches is
likely site and time dependent. It is worthwhile to
evaluate in advance the relationship between surface
winds and back trajectories and the extent to which
local and regional source contributions depend on
them.

There are several variants of TSA, such as PSCF,
SQTBA, and RTWC. They attempt to resolve not only
the direction of sources from the receptor but also the
spatial distribution of source intensities. Pekney et
al.113 compare PSCF with CPF and the spatial distribu-
tion of likely sources for Pittsburgh. PSCF and CPF
patterns were inconsistent for the sources (e.g., Figure
4). In some cases, sources of these species existed in all
directions from the site, resulting in unclear probability
fields. It is also likely that the spatial resolution chosen,
0.1° � 0.1°, was smaller than the precision of the HY-
SPLIT model. In a few cases, PSCF and CPF showed
reasonable agreement, but the sources could not be
identified from the emissions data. This includes emis-
sions enriched in Ga and nickel (Ni).

Zhou et al.117 used SQTBA and RTWC with the same
back trajectories to study PM2.5 source locations for two
rural sites in New York. Similar patterns were found for
some species such as SO4

2�, but different patterns were
found for others (e.g., geological dust). Compared with
PSCF fields that indicate a high source probability when
the trajectories pass through a cell, there is no funda-
mental basis for the SQTBA and RTWC approaches.
RTWC redistributes the pollutant concentrations mea-
sured at the receptor site along the path of back trajec-
tory according to the residence time, but in reality the
residence time is not proportional to the amount of
pollutant entrainment into the atmosphere. SQTBA
weights each trajectory transport field with pollutant
concentration, and this implies that contributions from
different trajectory segments are the same. How the
SQTBA and RTWC probability fields are related to phys-
ical source strength, even qualitatively, is questionable.
With the exception of Chen et al.,118 application of
these back trajectory methods ignores the vertical
movement of air parcels. Two trajectories with similar
horizontal but different vertical motions result from
different meteorological patterns will undoubtedly lead

Figure 4. Comparisons of: (a) CPF and (b) PSCF trajectory
models for a Se factor resolved by PMF for the Pittsburg Super-
site.65,113 PSCF shows most probable locations of Se sources south-
west of the Supersite, in agreement with the locations of Se sources
reported to the Toxics Release Inventory (all coal-fired power
plants).
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to different ambient pollutant concentrations at a recep-
tor. The effectiveness of current trajectory-based methods
must be systematically evaluated.

CONCLUSIONS
The answer to the question: “How well can we identify
and quantify source contributions using receptor mod-
els?” is “Reasonably well, but not perfectly.” “Reason-
ably well” means sufficiently to estimate that a contri-
bution is (1) small, (2) about the same as others, or (3)
dominant in the sample. This level of accuracy and
precision is adequate to make a control decision, al-
though it may not be sufficient to quantify the effects
of the control. High-time resolution and chemical spe-
cific data from the Supersites Program provided oppor-
tunities to apply different solutions to the receptor
model equations. The application of multiple solutions
sometimes yields consistent source types and SCEs, but
this is often not the case. Multiple solutions to the CMB
equations should be applied to challenge the results
from a single model. The multivariate solutions, such as
UNMIX, PMF, and ME, require many samples with dif-
ferent particle size, chemical, temporal, and spatial
characteristics, and these types of data are just not
available, even from the existing Supersites.

Methods have also been demonstrated to evaluate
the stability of receptor models with respect to samples
included, species selection, factor and profile selection,
and adjustment of parameters in the modeling software.
There are too few systematic studies, however, that show
how SCEs are affected by changes in these variables.

As with source modeling, receptor modeling contains
a subjective element, relying on the modeler’s experience
and judgment, as well as the available input data. A con-
ceptual model should be established to guide the model-
ing effort. PDRM represents an important improvement
to the factor analysis. It exploits the source model to
further constrain the source contributions. More complex
models could be used in the same framework.

CMB tracer solutions were commonly used. However,
there is rarely a unique tracer for any source. Even if there
is, the degree of enrichment of the tracer in the source
emission often varies, making it uncertain to estimate PM
or VOC contributions using the tracer. It has been shown
in the Supersites Program that (OC/EC)pri ratios used for
estimating the SOA fraction in OC vary among different
sites and seasons.48,106 Tracer-based method should be
considered mostly qualitative, used to provide insights
into whether certain sources should be considered in the
receptor modeling.

Wind direction and back trajectory analyses have
been used to infer source locations and/or spatial dis-
tributions. These approaches may be misleading be-
cause it is unclear how contributions from local and
distant sources change with wind direction and back
trajectory. The probability fields generated from ensem-
ble back trajectory analysis (PSCF, SQTBA, and RTWC)
do not directly correspond to the source strength. In-
consistencies were observed between different trajec-
tory methods. There is a need to evaluate the effective-
ness of these analyses under different atmospheric

conditions; this may also be achieved by a cross com-
parison between source- and receptor-oriented
modeling.

KNOWLEDGE GAPS AND RECOMMENDATIONS
The approach and benefit of coupling source modeling
with receptor modeling needs to be further examined.
PDRM shows a good example, but whether this concept
can be extrapolated to a more general modeling scheme
that includes long-range transport, area sources, and aero-
sol size and chemistry, is still a question.

Recommendations
(1) Further compare the PDRM results with effective

variance CMB solutions, UNMIX, and PMF using
existing Supersite data and high time-resolution
data from other monitoring networks.

(2) Evaluate the performance of large-scale receptor
models against chemical transport models
(CTMs) with respect to source apportionment for
both simulated and measured data. Examine con-
sistency for different time resolutions.

(3) Test the response of receptor models with and
without constraints provided by the CTMs.

Organic markers were shown to be valuable for source
apportionment, but they are usually measured for long-
term averages because of high cost and complicated ana-
lytical procedures. The diurnal and daily variations of
these organic marker concentrations are unknown, and
this prevents the inclusion of these species in UNMIX and
PMF solutions.

Recommendations
(1) Develop cost-effective and high time resolution

measurements for organic markers. This may be
based on the thermal-desorption-gas chromatog-
raphy/mass spectrometry technique.61,88,119,120

(2) Design field experiments to evaluate this tech-
nique and acquire sufficient dataset with inor-
ganic (elements and ions) and organic (thermal C
fractions and organic species) concentrations at
the same temporal resolution.

(3) Test the performance of different models, includ-
ing PDRM, with and without the C fractions and
organic markers.

Efforts should be made to identify profiles that relate
sources to ambient pollutants. Current speciation only
explains 20–50% of organic mass. The remaining mass
could be highly polar humic-like substance (HULIS),
which are not fully characterized and quantified.105 EC is
a useful marker for combustion emission, but the differ-
ences between EC produced from various combustion
sources are uncertain. Wood smoke and diesel exhaust are
reported to have different spectral absorption efficiencies
and Raman spectra. There were also many single particle
measurements made during the Supersites Program,88,89

but the information is not integrated into receptor models.

Recommendations
(1) Improve characterization of organic matter, par-

ticularly the water-soluble fraction, for speciation
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and bulk properties.88 Understand their abun-
dances in sources and various ambient environ-
ments.

(2) Improve the characterization of EC in terms of
thermal and optical properties as well as micro-
scopic properties such as size and morphology.
Differentiate EC from various combustion
sources.

(3) Adapt new methods, including aerosol mass spec-
troscopy, to receptor models and test their useful-
ness. This should start with identifying patterns
in the source and ambient samples.
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